一种遥感卫星系统,包括第一卫星(100),第一卫星(100)包括至少四个图像传感器(131,132,133,134),至少四个图像传感器(131,132,133,134)同时采集地面的图像,至少四个图像传感器(131,132,133,134)采集的地面区域完全重叠或者部分重叠,至少四个图像传感器(131,132,133,134)采集的图像的空间分辨率和光谱分辨率均彼此不同,第一卫星(100)对至少四个图像传感器(131,132,133,134)采集的图像的至少一部分进行图像融合以生成融合后的遥感图像。该遥感卫星系统能够利用卫星的有限资源高效地获得具有高清晰度的遥感图像。
背景技术
遥感技术是指从高空或外层空间接收来自地球表层各类地物的电磁波信息,并通过对这些信息进行扫描、摄影、传输和处理,从而对地表各类地物和现象进行远距离控测和识别的现代综合技术。
高光谱遥感是在20世纪80年代发展起来的一种全新的遥感技术。该技术利用星载或机载的成像光谱仪设备对地面进行成像,成像光谱仪在对目标地空间特征成像的同时,对每个空间像元经过色散形成几十个乃至几百个窄波段以进行连续的光谱覆盖,从而形成谱分辨率达到纳米数量级的遥感数据。这种数据由于光谱分辨率高,通常称为高光谱数据或高光谱图像。高光谱数据的光谱分辨率在10纳米左右,比多光谱图像高出几十甚至上百倍。伴随着成像光谱技术的不断发展,高光谱数据已经被应用到了众多领域中。从民用领域广泛应用的环境监测、城市规划、农作物估产、洪涝灾害调查、国土资源调查,到军事领域的卫星侦察、目标检测识别等等。
高光谱图像的突出特点是在获得目标图像二维空间景像信息的同时,还可以获得高分辨率的一维表征其物理属性的光谱信息,即图谱合一。通过处理高光谱图像中目标图像的空间特征和光谱特征,可以以较高的可信度辨别和区分地物目标。这对遥感图像军事侦察、真/假目标识别、农林的精细化分类等都具有重要应用意义和巨大的潜力。遥感技术长期以来的两个主要发展趋势就是向高空间分辨率和高光谱分辨率方向发展,但二者的发展往往是相互矛盾、相互制约的,这主要是由于成像光学系统在设计和实现上的限制。高光谱图像的光谱分辨率一般较高,但其空间分辨率却偏低,这对于目标识别算法较为不利。
空间分辨率简单来说就是成像系统对图像细节分辨能力的一种度量,也是图像中目标细微程度的指标,它表示景物信息详细程度,是评价传感器性能和遥感信息的重要指标之一,也是识别地物目标形状大小的重要依据。遥感图像的空间分辨率的高低与成像光学系统有着直接的关系,如果其分辨率较低,将使得遥感图像中存在较多的混合像元,严重影响图像的分析和理解,这对于目标分类、检测和识别来说,是非常不利的。
光谱分辨率是指传感器在一定波长范围内对地物光谱进行离散采样的精细程度。光谱分辨率是表征传感器获取地物光谱信息性能的主要指标。相对于空间图像信息,作为刻划地物特征的另一种方式,通过远程探测得到的光谱信息同样可实现对地物的辨识,并且光谱信息直接与目标的物质组成有关,特别是对于目标识别、植被的精细分类、海洋水色定量监测以及军事上对伪装的辨识等从光谱的角度比空间的图像更适合。
图像融合就是将不同空间与光谱分辨率图像按特定的算法进行处理,使所产生的新图像同时具有原来图像的多光谱特性以及高空间分辨率信息。在多光谱遥感影像融合中,典型的图像融合方法有:基于IHS变换的融合方法,基于IHS变换和小波变换的相结合的融合方法,基于HSV变换与小波变换相结合的融合方法。
目前,通常是将全色图像和多光谱图像进行融合。例如,公开号为CN108230281A的中国专利文献公开了一种遥感图像处理方法,所述方法的一具体实施方式包括:匹配全色图像的特征与多光谱图像的特征,得到多个特征对;基于特征对,确定图像间映射矩阵;根据图像间映射矩阵,确定全色图像与多光谱图像的重叠区域;融合全色图像的重叠区域与多光谱图像的重叠区域,得到融合后的遥感图像。该实施方式可以处理的遥感图像的范围更广,避免了位深度转换带来的图像精度的损失,提高了融合后的图像的精度。但是,在遥感技术快速发展的今天,我们对遥感图像的分辨率有着越来越高的要求,但对于现有的成像设备,还远远不能满足各方面的要求。因此,有必要对现有技术进行改进。
实现思路